# a, mu, P = x # a_mu = a-mu # a_mu = tf.expand_dims(a_mu,1) # return -0.5*tf.matmul( tf.matmul( a_mu, P ), tf.transpose(a_mu,[0,2,1]) ) u, mu, p = x u_mu = tf.expand_dims(u - mu, -1) advan = -tf.matmul(tf.transpose(u_mu, [0, 2, 1]), tf.matmul(p, u_mu))*0.5 advan = tf.reshape(advan, [-1, 1]) return advan
墨之科技,版权所有 © Copyright 2017-2027
湘ICP备14012786号 邮箱:ai@inksci.com