# a, mu, P = x
# a_mu = a-mu
# a_mu = tf.expand_dims(a_mu,1)
# return -0.5*tf.matmul( tf.matmul( a_mu, P ), tf.transpose(a_mu,[0,2,1]) )
u, mu, p = x
u_mu = tf.expand_dims(u - mu, -1)
advan = -tf.matmul(tf.transpose(u_mu, [0, 2, 1]), tf.matmul(p, u_mu))*0.5
advan = tf.reshape(advan, [-1, 1])
return advan
墨之科技,版权所有 © Copyright 2017-2027
湘ICP备14012786号 邮箱:ai@inksci.com