以下代码尽管无法运行,但可供阅读参考。
class def __init__(self): self.sess = tf.Session() self.summary() self.sess.run(tf.global_variables_initializer()) def summary(self): ''' First, define summary_merged and summary_write. ''' self.summary_merged = tf.summary.merge_all() self.summary_write = tf.summary.FileWriter(self.work_path + 'log/BC/%s' % time.strftime('%m%d%H%M%S', time.localtime()), graph=self.sess.graph) def build_graph(self): tf.summary.scalar('bc_loss', tf.reshape(self.bc_loss, [])) ''' Add any scalar you want to monitor. ''' def train_step(self, state, action): fetches = { 'summary': self.summary_merged, } ''' Second, run the summary_merged with sess. ''' def train(self): train_step = 0 for _ in range(50): train_step += 1 i_train = train_step self.summary_write.add_summary(results['summary'], i_train) ''' Third, Use summary_write here to add summary. Do not forget set i_train. '''
墨之科技,版权所有 © Copyright 2017-2027
湘ICP备14012786号 邮箱:ai@inksci.com